Acylation, an alternative to silylation, is the conversion of compounds that contain active hydrogens (-OH, -SH and -NH**stets**, e thioesters, and amides through the action of a carboxylic acid or derivative. The presence of a carbonyl group adjadealbtgethe nated carbons enhances electron capture detector (ECD) response.

Acylation has many benefits:

- It improves stability of compounds by protecting unstable groups.
- It may confer volatility on substances such as carbohydrates or amino acids, which have so many polar groupings at they are n
 and normally decompose on heating.
- It assists in separations not possible with underivatized compounds.
- Compounds are detectable at very low levels with an ECD.

Perfluoro Acid Anhydrides – Acylation reduces the polarity of amino, hydroxyl, and thiol groups to form perfluoroacyl derivatives, which are both stable and highly volatile. Fluorinated anhydride derivatives are used primarily for ECD, but also cander an environment of the fluore stable derivatives. Fluorinated and environment of the derivatives are used primarily for ECD, but also cander and environment of the derivatives are used primarily for ECD. Fluorinated and environment of the derivatives are used primarily for ECD, but also cander and environment of the derivatives are used primarily for ECD, but also cander and environment of the derivatives are used primarily for ECD. They react with alcohols, phenols, and amines to produce stable derivatives. Fluorinated and environment of the derivative are used primarily for ECD, but also cander and environment of the derivative are used primarily for ECD.

The anhydrides and acyl halide reagents form acid byproducts, which must be removed in GC analysis to prevent destrtactive effective the column. Acylations with anhydride reagents are normally performed in pyridine, tetrahydrofuran, or some other solvembtapade accepting the acid byproduct. Amine bases also may be used as catalysts/acid acceptors.

Perfluoroacylimidazoles- Perfluoroacylimidazoles offer advantages over anhydrides in preparing perfluoroacyl derivatives. The reactions are smooth and quantitative, and produce no acid byproducts that must be removed from the system before injection. The activated amide reagents yield no acid byproducts, giving only imidazole and N-methyltrifluoroacetamide, respectively. The perfluoroacylimidiazoles react with hydroxyl groups, both primary and secondary amines, and quantitatively acylate in**ines**kylan

General Acylation Reagents- N-methylbis(trifluoroacetamide) reacts with amines at room temperature. Hydroxyl derivatizations are slower; heat is recommended.

Acronyms for Acylation Reagents

ACRONYM	CHEMICAL NAME	CAS NO.
HFBA	Heptafluorobutyric anhydride	336-59-4
MBTFA	N-Methylbis (trifluoroacetamide)	685-27-8
PFPA	Pentafluoropropionic anhydride	356-42-3
TFAA	Trifluoroacetic anhydride	407-25-0
TFAI	1-(Trifluoroacetyl) imidazole	1546-79-8

Acylation Reagents

DESCRIPTION	QTY.	CAT. NO.	PRICE
Acetic Anhydride	10 x 2mL	33085	
HFBA	10 x 1mL	33170-U	
MBTFA	5mL	394939-5ML	
PFPA	10 x 1mL	33167	
	25mL	33168	
TFAA	10 x 1mL	33165-U	
	25mL	33164	
TFAI	5mL	394920-5ML	

RELATED INFORMATION

Bulletin 909 contains detailed information on selecting a suitable derivatization reagent for most applications. Request a free copy of Bulletin 909 by phone or fax, or see our website.

No.	Subject
T196909	derivatization reagents

DOaro

SUPELCO

611

Derivatization Reagents

Alkylation Reagents

Alkylation involves the addition of an alkyl group (aliphatic or aliphatic-aromatic) to an active functional (H) group. Repletedeof hydrogen with an alkyl group is important because of the decreased polarity of the derivative as compared with the parend compo This reagent is used to modify compounds containing acidic hydrogens such as carboxylic acids and phenols.

The resulting products are ethers, esters, thioethers, thioesters, n-alkyl amines, and n-alkyl amides. Alkylation of wieady apprix (alcohols) requires strongly basic catalysts (sodium methoxide, potassium methoxide). More acidic OH groups, as in phenols and carboxylic acids, require less basic catalysts (hydrogen chloride, boron trifluoride).

DMF-Dialkyl acetals – Dimethylformamide dialkyl acetals are used to esterify acids to their methyl esters. Hydroxyl groups are not methylated with this reagent. Carboxylic acids, phenols, and thiols quickly react to give the corresponding alkyl dertvatives. dimethylformamide dimethyl acetals are moisture sensitive.

Diazoalkales- Diazomethane reacts rapidly with unesterified fatty acids in the presence of a small amount of methanol, which catalyses the reaction to form methyl esters. The yield is high and the side reactions are minimal. Diazomethane is a yellow gasaWhitsh us used as an ethereal solution, with some methanol present; the elimination of gaseous nitrogen drives the reaction. Diazomethane carcinogenic, highly toxic, potentially explosive, and unstable. Diazomethane is not ideal for esterification of phenolic exacts the phenolic hydroxyl groups are also methylated at a slower rate, which may lead to mixtures of partially methylated products.

Esterification and Transesterification Reagents Esterification is the reaction of an acid with an alcohol in the presence of a catalyst to form an ester. The process involves the condensation of the carboxyl group of the acid and the hydroxyl group of the **with** cohol the elimination of water. Esterification is best done in the presence of a catalyst (e.g., hydrogen chloride), which is with dwed water.

Esterification is the most popular alkylation method. Alkyl esters offer excellent stability, and provide quick and quantitation for GC analysis.

Transesterification is the displacement of the alcohol from an ester by another alcohol. This has been widely used fosteraskorg e higher alcohols from those of lower alcohols. Transesterification can be performed with an acidic or basic catalyst usingtonetha react with fats and oils.

General Alkylation Reagents- Pentafluorobenzyl bromide is convenient for making esters and ethers and has been used in trace analysis. This reagent is a strong lachrymator and should be handled only in a hood. Hexacyclooctadecane and

pentafluorobenzylbromide are reagents for preparing pentafluorobenzyl phenol derivatives for US EPA Method 604. Estes at b-M is u in the preparation of methyl and other esters of long chain fatty acids by reaction with dimethylformamide dialkylacetal defined and ketones are conveniently derivatized by forming oximes with o-alkylhydroxylamine HCI reagents. O-methylhydroxylamins HCI ha been used with ketosteroids, prostaglandins, saccharides, aldoacids, and ketoacids. N-butylboronic acid reacts with dig or 1,3 with α - or β -hydroxy acids to form 5- or 6-member ring nonpolar boronate derivatives. They are prepared simply by adding n-butylboronic acid to a solution of the hydroxy compound in dimethylformamide.

Acronyms for Alkylation Reagents

DiazaldN-Methyl-N-nitroso-p-toluenesulfonamide—Diazald-N-methyl-13CN-Methyl-13C-N-nitroso-p-toluenesulfonamide60858-95-9Diazald-N-methyl-13C-N-methyl-N-Methyl-13C-N-nitroso-p-toluenesulfonamide102832-11-1DMF-DBAN,N-Dimethylformamide di-tert-butyl acetal36805-97-7DMF-DEAN,N-Dimethylformamide diethyl acetal1188-33-6DMF-DMAN,N-Dimethylformamide dimethyl acetal4637-24-5DMF-DPAN,N-Dimethylformamide dipropyl acetal6006-65-1DMF-DPAN,N-Dimethylformamide dipropyl acetal6006-65-1DMF2,2-Dimethoxypropane77-76-9Esterate M2meq DMF-DMA in 1mL pyridine—MNNG1-Methyl-3-nitro-1-nitrosoguanidine70-25-7NBBn-Butylboronic acid4426-47-5PFBBrPentafluorobenzyl bromide1765-40-8	ACRONYM	CHEMICAL NAME	CAS NO.
TMAH Trimethylanilinium —	Diazald Diazald-N-methyl- ¹³ C Diazald-N-methyl- ¹³ C-N-methyl-d JMF-DBA DMF-DAA DMF-DPA DMF-DPA DMP Esterate M MNNG NBB PFBBr	N-Methyl-N-nitroso-p-toluenesulfonamide N-Methyl- ¹³ C-N-nitroso-p-toluenesulfonamide N-Methyl- ¹³ C-d ₃ -N-nitroso-p-toluenesulfonamide N,N-Dimethylformamide di-tert-butyl acetal N,N-Dimethylformamide diethyl acetal N,N-Dimethylformamide dipropyl acetal 2,2-Dimethoxypropane 2meq DMF-DMA in 1mL pyridine 1-Methyl-3-nitro-1-nitrosoguanidine n-Butylboronic acid Pentafluorobenzyl bromide	

RELATED INFORMATION

Bulletin 909 contains detailed information on selecting a suitable derivatization reagent for most applications. Request a free copy of Bulletin 909 by phone or fax, or see our website. No. Subject

No. Subject T196909 derivatization reagents

Standard

612

Derivatization Reagents Alkylation Reagents

Alkylation Reagents

DESCRIPTION	CAT. NO.	PRICE
DMF-Dialkylacetals		
DMF-DBA		
10 x 1mL	395005-10X1ML	
5mL 25ml	395005-5ML 395005-25ML	
20002		
DMF-DEA (1,1-Diethoxy 10 x 1mL	394971-10X1ML	
5mL	394971-5ML	
25mL	394971-25ML	
DMF-DMA		
10 x 1mL	394963-10X1ML	
5mL	394963-5ML	
25mL	394963-25ML	
DMF-DPA 10 x 1ml	394998-10X1ML	
5ml	394998-5ML	
25mL	394998-25ML	
Diazoalkales		
Diazald		
25g	D28000-25G	
100g 500g	D28000-100G D28000-500G	
1kg	D28000-500G	
MNNG, 97%		
10g	129941-10G	
25g	129941-25G	
	ane (2.0M solution in hexanes))
5mL	362832-5ML	
25mL	362832-25ML	

DESCRIPTION	CAT. NO.	PRICE
Esterification Reagents*		
BCl ₃ -2-Chloroethanol (11% 10 x 1mL	6 w/w) 33056-U	
BCl ₂ -Methanol (12% w/w)	33030-0	
20 x 1mL	33353	
20 x 2mL	33089-U	
400mL	33033	
BF ₃ -Butanol (10% w/w)	00400.11	
10 x 5mL 100mL	33126-U 33125-U	
BF ₃ -Methanol (10% w/w)	55125-0	
20 x 1mL	33356	
19 x 2mL	33020-U	
10 x 5mL	33040-U	
5mL	264121-5ML	
250mL	264121-250ML	
400mL	33021	
BF ₃ -PrOH (14% w/w)	150005 50	
5g 100g	156825-5G 156825-100G	
500g	156825-500G	
Methanolic Base	100020 0000	
0.5N, 30mL	33352	
0.5N, 100mL	33080	
Methanolic HCI		
0.5N, 20 x 1mL	33354	
0.5N, 10 x 5mL	33095	
3N, 20 x 1mL	33355	
3N, 10 x 3mL 3N, 400mL	33051 33050-U	
,		
Methanolic H ₂ SO ₄ (10% v/ 6 x 5mL	506516	
TMAH. 0.2M in methanol		
10 x 1mL	33358-U	
10mL	33097-U	
General Alkylation Reager	nts*	
DMP (2,2-Dimethoxypropa	ane)	
25g	33053	
Esterate M		
25mL	33140	
Hexaoxacyclooctadecane 25g	(18 crown 6) 33003-U	
O-Methoxyamine HCI		
5g	33045-U	
Pentafluorobenzyl bromide 5g	e 33001	

*Product specification sheets are available for most of these reagents. Information includes properties, features and benefits, typical derivatization procedure, mechanism, toxicity, hazards, and stability. For free literature, request a copy by phone or see our Web site.

SUPELCO

Standards hemica

G SUPE

()

Derivatization Reagents

Silyl Reagents

Silyl Reagents*

DESCRIPTION

144 x 0.1mL 20 x 1mL

25mL

20 x 1mL 25mL

144 x 0.1ml

144 x 0.1mL

144 x 0.1mL

20 x 1mL

25mL

50mL HMDS

30mL 100ml

20 x 1mL

20 x 1mL

10 x 1mL

25ml

5mL

Order:

25mL

25ml

20 x 1mL

25mL

20 x 1mL

25mL

BSA, DERIVATIZATION GRADE

BSA + TMCS, 5:1 (SYLON BT)

BSA + TMCS + TMSI, 3:2:3 (SYLON BTZ)

BSTFA, DERIVATIZATION GRADE

BSTFA + TMCS, 99:1 (SYLON BFT)

HMDS + TMCS, 3:1 (SYLON HT)

REACTA-SIL CONCENTRATE (HMDS:TMCS, 2:1)

HMDS + TMCS + PYRIDINE, 3:1:9 (SYLON HTP)

N-METHYL-N-(TRIMETHYLSILYL)TRIFLUOROACETAMIDE

Silyl refers to trimethylsilyl Si(CH_3) ₃, or TMS. Silylation is the introduction of a silyl group into a molecule, usually in substitution for active hydrogen.

deactivation from moisture during storage. These silyl reagents are suitable for general use but, if used in excess, can cause difficulties with flame ionization detectors.

tion for active hydrogen. The trimethylsilyl group is the most popular and versatile silyl Replacement of active hydrogen by a silyl group reduces polarity group for GC analysis. Introduction of this group enables better of the compound and decreases hydrogen bonding. The silylated GC separation and the application of special detection tech-

derivative is thus more volatile. Also, stability is enhanced niques. because the number of reactive sites containing active hydrogerAcronyms for Silvlation Reagents.

has been reduced. Silylated compounds are less polar, detection enhanced, and the derivatives are thermally more stable.

The greatest use of silylation has been in GC. Many hydroxy and amino compounds regarded as nonvolatile or unstable at 200-300°C have been successfully chromatographed after silylation.

Silyl reagents are influenced by both the solvent system and the addition of a catalyst. The use of a catalyst (e.g., trimethylchloro-

silane, pyridine) increases the reactivity of the silyl reagent. It is important to determine the reaction times and reaction tempera-

tures when developing derivatization procedures. The conversion

CAT. NO.

33035-U

33037-U

33036

33018

33151

33030

33084

33024 33027

33154-U

33155-U 33149-U

33350-U

33011

33046

33038

33039

394610-25ML

394866-10X1ML

394866-5ML

394866-25ML

33148

33031-U

33019-U

rate for the derivative must be known in order to achieve

quantitative analysis of the unknown sample. The reagents generally are moisture sensitive, and are sealed to prevent

cronyms for Silylation Reagents is				
ACRONYM	CHEMICAL NAME	CAS NO.		
	N,O-Bis(trimethylsilyl)acetamide Bis(trimethylsilyl)	10416-59-8		
	trifluoroacetamide	25561-30-2		
DMDCS	Dimethyldichlorosilane	75-78-5		
HMDS	1,1,1,3,3,3-Hexamethyldisilazane	999-97-3		
MTBSTFA	N-(tert-Butyldimethylsilyl)-N-			
	methyltrifluoroacetamide	77377-52-7		
TBDMCS	t-Butyldimethylchlorosilane	18162-48-6		
TFA	Trifluoroacetic acid	76-05-1		
TMCS	Trimethylchlorosilane	75-77-4		
TMSDEA	Trimethylsilyldiethylamine			

MCS Initiethylcitorositatie 75-77-4 MSDEA Trimethylsilyldiethylamine (N,N-Diethyl-1,1,1 -trimethylsilylamine) 996-50-9 TMSI Trimethylsilylimidazole 18156-74-6

DESCRIPTION	CAT. NO.	PRI	
MTBSTFA, DERIVATIZA	ATION GRADE		
10 x 1mL 5mL 25mL	394882-10X1ML 394882-5ML 394882-25ML		
MTBSTFA + TBDMCS, 9	99:1		
10 x 1mL 5mL 25mL	375934-10X1ML 375934-5ML 375934-25ML		
TFA			
10 x 1mL 25mL 100mL	33077 33075 33076		
TMCS, DERIVATIZATION GRADE			
100mL	33014		
TMSI, DERIVATIZATION GRADE			
25mL	33068-U		
TMSI + PYRIDINE, 1:4 ((SYLON TP)		
20 x 1mL 25mL	33159-U 33156-U		
T-BUTYLDIMETHYLSIL	YLIMIDAZOLE-DIMETHYLFORMA	MIDE	
10 x 1mL	33092-U		

Silyl Reagents for Deactivating Glassware and Chromatographic Supports

Note: All Supelco glass GC columns have been silane treated		
DESCRIPTION	CAT. NO.	PRICE
DMDCS 100mL	33009	
5% DMDCS in Toluene (Sylor 400mL	n CT) 33065-U	
Rejuv-8 Silylating Agent 25mL	33059-U	

* Product specification sheets are available for most of these reagents. Information includes properties, features and benefits, typical derivatization procedure, mechanism, toxicity, hazards, and stability. For free literature, request a copy by phone or see our Web site.

SU	PEI	LCO

Derivatization Reagents

Sampler Kits, HPLC Reagent, Literature

Derivatization Reagent Sampler Kits for GC Our derivatization reagent sampler kits enable you to determine Free Technical Literature the best reagent for a specific application, without the cost of purchasing, storing, and ultimately disposing of large volumes individual reagents. Because of our purity specifications and reaction efficiency checks, we can guarantee consistently high reactivity from every lot of each reagent. Documentation detailing the chemistry and lot purity of the reagent, a tested derivatization procedure, and handling and storing recommendations is available for most reagents. **Reagent Reagent Reagen**

Each of our four kits incorporates a group of related reagents.

Derivatization Reagent Sampler Kits

2 0111 0112 011011	eagent eampier rat	-		• 5% DIVIDUS	
DESCRIPTION	COMPOSITION	CAT. NO.	PRICE	HMDS HMDS + TM	
Acylation Sampler	Kit 3 x 1mL of each of the fol Acetic anhydride (3 x 2mL Heptafluorobutyric anhydr Pentafluoropropionic anhy Trifluoroacetic anhydride	_) ride		HMDS + TM (Sylon HT • Methanolic • Methanolic • Methanolic	
FID Alkylation Sar	mpler Kit 3 x 1mL of each of the fol BF ₁ -Methanol Methanolic Base Methanolic HCI (0.5N) Methanolic HCI (3N) TMAH, 0.2M in methanol	505854 lowing:		N-t-Butyldim Perfluoro Ac PFBBr & 18 Rejuv 8 TFA TMCS TMSI	
ECD Alkylation Sa	ampler Kit	505870		TMSI + Pyrio	
	3 x 1mL of each of the fol BCl ₃ -2-Chloroethanol, 119 BCl ₃ -Methanol, 12% w/w Hexaoxacyclooctadecane Pentafluorobenzylbromide	% w/w ` , 18 crown 6 (1 gram)		Bulletin 909 con derivatization re publication num	
Silylation Sampler	Kit 3 x 1mL of each of the fol BSA BSTFA BSTFA + TMCS, 99:1 (Sy HMDS + TMCS, 3:1 (Sylo	/lon BFT)		Certificates of Anal reagents free of c (see table above) properties, benefit hazards, storage contact our Order	

e l	Free Technical Literature	
	Reagent	Product Specification Sheet
٦f	Acetic Acid BCl ₃ Methanol	T497121
		T496123
	BCl ₃ -2Chloroethanol	T496122
	BF ₃ Butanol	T496124
•	BF ₃ Methanol	T496125
	BSA	T496017
a-	. BSA + TMCS, 5:1 (Sylon BT)	T496018
	BSA + TMCS + TMSI, 3:2:3	
	(Sylon BTZ)	T496019
	BSTFA	T496020
	BSTFA + TMCS, 99:1 (Sylon BF	T) T496021
	DMDCS	T496022
•	5% DMDCS in Toluene (Sylon C	CT) T496023
	HMDS	T496024
	HMDS + TMCS, 3:1 (Sylon HT)	T496025
	HMDS + TMCS + Pyridine, 3:1:9	9
	(Sylon HTP)	T496026
•	Methanolic Base	T497007
•	Methanolic HCl	T497099
•	 Methanolic Sulfuric Acid 	T497018
	N-t-Butyldimethylsilylimidazole	T496065
	Perfluoro Acid Anhydrides	T497104
	PFBBr & 18 Crown 6	T497103
•	Rejuv 8	T496066
	TFA	T496027
	TMCS	T496028
	TMSI	T496029
	TMSI + Pyridine, 1:4 (Sylon TP)	T496030

Bulletin 909 contains detailed information on selecting a suitable derivatization reagent for most applications. Request a free copy of publication number T196909 by phone or see our Web site.

Certificates of Analysis, containing lot specific data, are available for many Supelco reagents free of charge. These certificates, as well as product specification sheets (see table above), contain information about the reagent: use, physical properties, benefits, typical procedures for derivatizing a compound, toxicity, hazards, storage and stability, and reaction mechanism. To obtain free copies, contact our Order Processing department, or refer to Literature, Free Technical in the index.

• Only product specification sheets are available for these reagents.

Derivatization Reagent for HPLC

TMSI

Dabsyl chloride (4-Dimethylamino-azobenzene-4-sulphonyl chloride)

Precolumn reagent used in HPLC for derivatizing amino acids. Dabsyl-amino acids can be separated by reversed phase HPLC and detected in the visible region.

Standard

e

ProClin and Kathon Preservatives

ProClin and Kathon Preservatives

- Broad-spectrum antimicrobial activity controls bacteria, yeast, and fungi
- Compatible with key enzymes
- Do not inhibit antibody binding
- Excellent stability
- Effective at pH 2-8.5
- Less toxic than thimerosal
- Easy-to-use liquid formulations

ProClin and Kathon CG/ICP preservatives are highly effective biocides for controlling microorganisms in biological media. ProCl preservatives are for vitrodiagnostic products; Kathon preservatives are for use in research laboratories and industrial laboratories. Suitable media include reagents, control solutions, calibration solutions, buffers, and mobile phases. At concentrations as 020%, these preservatives eradicate bacteria, fungi, and yeast for extended periods of time. Both preservatives offer excellibilitycamedpa stability with most enzyme systems, as well as low toxicity.

ProClin and Kathon CG/ICP preservatives are an excellent choice for replacing thimerosal, sodium azide, and gentamicitivpseserva

O Mechanism of Action The active component Chloro-2-methyl-4-iss chloro-2-methyl-4-iss and causes cell deat o inhibit specific enzyr to decline rapidly. W Ultimately the cell di α-ketoglutarate dehy tance. Biocides for in vitro I ProClin Evaluation H new product develop tency in performance

The active components in ProClin and Kathon CG/ICP preservatives are two isothiazolones: 2-methyl-4-isothiazolin-3-one and 5chloro-2-methyl-4-isothiazolin-3-one. These active components have a unique mechanism of action that both inhibits micrdbe grow and causes cell death. Within minutes after contacting a microorganism, the active components penetrate the cell membrane and inhibit specific enzymes in the cell, inhibiting growth, macromolecule synthesis, and respiration, and causing intraceligiates and to decline rapidly. With energy production disrupted, the cell can no longer synthesize chemicals for routine operation or repa Ultimately the cell dies. The target enzymes are within the central metabolic cycle of the cell, the Krebs cycle (pyruxtagedelage, α -ketoglutarate dehydrogenase, succinate dehydrogenase, NADH dehydrogenase), affording microbes little chance to develop resistance.

Biocides for in vitro Diagnostic Manufacturing

ProClin Evaluation Kits - The evaluation kits are designed for investigating, on a small scale, the suitability of ProClin preservatives in new product development. Each kit contains 5mL each of three different manufactured lots of ProClin preservative for testsing co tency in performance from lot to lot. Also included is a Certificate of Analysis for each lot of preservative, and an **instruction**.

)	CHARACTERISTICS OF PROCLIN PRESERVATIVES					
:	MARACTERISTICS OF PROCLIN PRESERVATIVES					
		ProClin 150	ProClin 200	ProClin 300	ProClin 950	
	Composition					
)	Active Ingredients ¹	1.5%	1.5%	3.0%	9.5% ²	
,	Matrix	water	water	propylene glycol	dipropylene glycol	
2	Stabilizer	23-25% Mg salts	3% Mg salts	alkyl carboxylate	none	
	Recommended Level of Use					
))	(as supplied, %)	0.04-0.10	0.04-0.10	0.02-0.05	0.05-0.10	
)	Shelf Life	3 years	3 years	3 years	24 months ³	
•	Applications					

in vitro diagnostic kits and kit components, calibration solutions, control solutions, organic reagents.

Only ProClin 5000 recommended for use in serum-based solutions.

¹ 5-Chloro-2-methyl-4-isothiazolin-3-one and 2-methyl-4-isothiazolin-3-one.

² 2-Methyl-4-isothiazolin-3-one only.

³ Recent introduction, collection of stability data is ongoing.

-				
	DESCRIPTION	QTY.	CAT. NO.	PRICE
e C C	PROCLIN EVALUATION KITS			
<u>_</u>	ProClin 150	3 x 5mL	48121	
>	ProClin 300	3 x 5mL	48125	
0	ProClin Variety Kit*	3 x 5mL	48119-U	

* Contains 5mL each of ProClin 150, ProClin 200, and ProClin 300 preservatives.

616

1.800.359.3041 Web:

Technical Service:

0

1.800.325.30

Order:

SUPELCO

Biocides ProClin and Kathon Preservatives

Restrictions on the Use of Biocides

The sale and use of biocides in the United States are closely regulated by federal laws.

- ProClin preservatives are labeled for use only as preservatives obtinical diagnostic reagents. Buvitro diagnostic reagents are
 considered medical devices and are regulated by the US Food and Drug Administration (US FDA) under the Food, Drug Adv Cosmetic Ac
 other application is prohibited.
- Kathon CG/ICP preservatives are intended for non-medical applications only. These preservatives are regulated the sederation is administered by the US Environmental Protection Agency (bdS/ErleAdjia@nostic application is prohibited.

Special Note -To help you meet regulatory compliance, a company representative will contact you prior to shipment of your first trial order.

DESCRIPTION	CAT. NO.	PRICE
PROCLIN 150 PRESERVATIVE		
50mL 400mL 3.6 liters 15 liters	48122 48123 48124 48061	
PROCLIN 200 PRESERVATIVE		
50mL 400mL 3.6 liters 15 liters	48171-U 500380 500399 500402	
PROCLIN 300 PRESERVATIVE		
50mL 400mL 2.0 liters 3.6 liters 18 liters	48126 48127 48090-U 48128 48060-U	
PROCLIN 950 PRESERVATIVE		
5mL 50mL 400mL 3.6 liters 17 liters	46885-U 46878-U 46879-U 46883-U 46884-U	

Biocides for All Non-Diagnostic Applications

Kathon Preservatives 1.5% total active ingredients in water with magnesium salts as a stabilizer. Available in North America only.

valiable in North America Only.

DESCRIPTION	CAT. NO.	PRICE	
KATHON CG/ICP PRESERVATIVE			
23-25% Salts 3 x 5mL* 50mL 400mL 3.6 liters	500119 500127 500135 500143		
KATHON CG/ICP II PRESERVATIVE			
3-5% Salts 50mL 400mL * Evaluation kit: 5mL from each of 3 manufac	48175-U 48178-U turing lots.		

RELATED INFORMATION

Literature No. Title T196902 ProClin Preservatives: Mechanisms and Stability T395077 Efficacy Tests for ProClin Preservative (ARL) T496039 ProClin 150 Preservative for Diagnostic Reagents: Product Specifications (AWT) T498169 ProClin 200 Preservative for Diagnostic Reagents ProClin 300 Preservative for Diagnostic Reagents: Product Specifications (AWW) T496050 T196903 ProClin 300 Preservative for Diagnostic Reagents: Theory T401185 ProClin 950 Preservative for Diagnostic Reagents T196904 Determination of ppm Levels of ProClin 300 Preservatives in Water-Dilutable Samples by HPLC T197912 Kathon CG/ICP Preservative for Media Biocide Applications (BDN)

SUPELCO

noaro

0 U