Solid Phase Extraction (SPE) **Discovery Products**

Solid Phase Extraction Products

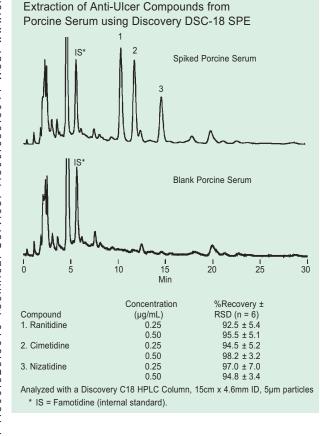
Designed to meet the exacting requirements of pharmaceutical abitscovery SPE Products: clinical analysis, Discovery SPE products are ideal for all application

Developed, tested and quality controlled for pharmaceutical areas including: Food & Beverage, Environmental, Petrochemical, Argiculture, Consumer Products and more...

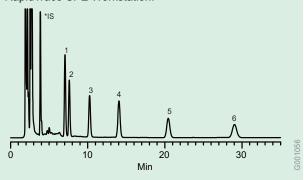
The multitude of phase chemistries and hardware configurations available within the Discovery SPE line offer the comprehensive level of selection and flexibility required to handle today's increasingly complex and diverse sample prep challenges.

Each Discovery SPE product includes an extensive Certificate of Analysis ensuring optimal performance and reproducible properties for each Discovery product shipped from Supelco.

Discovery SPE allows you to:


- Achieve greater and more reproducible recoveries for diverse compounds from difficult sample matrices
- Removes endogenous sample interference for improved . accuracy and sensitivity
- Concentrate target analytes for increased sensitivity
- Protects analytical instrument from unwanted sample matrix components

Discovery SPE offers the quality and performance you need to bridge the sample prep gap between sample collection and analys


- and clinical applications
- Twelve different phase chemistries ranging from polymerically • bonded C18 to polyamide adsorbents
- Available in 96-well plate configurations for high throughput parallel processing
- Available in Buchner Funnel configurations for easier scalability (combinatorial chemistry clean-up)
- Ultra clean phases for highly sensitive analyses
- Narrower pore size distribution for improved extraction selectivity
- Acid washed to reduce metal chelating activity
- Consistent particle size and specific surface area coverage to ensure reproducible recoveries
- Low fines (<12µm) content to minimize injection port fouling

PROPERTIE

sis	. Base Silica:	Irregular shape, acid washed
	Mean Particle Size:	50µm
	Mean Pore Diameter:	70Å
	Total Pore Volume:	0.9cm ³ /g
:	Specific Surface Area:	480n ² /g
	Endcapped:	Yes

Barbiturates from serum, using 500mg/3mL Discovery DSC-18Lt SPE tubes and Zymark RapidTrace SPE Workstation.

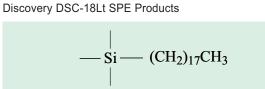
Analyzed with a Discovery C18 HPLC column, 15cm x 4.6mm ID, 5µm particles

Efficiency of Recovery

Concentration					
(µg/mL)	%Recovery	%RSD (n=6)			
0.5	96.2	±1.6			
1.0	94.9	±1.7			
0.5	98.5	±2.1			
1.0	100.8	±0.8			
0.5	97.2	±1.9			
1.0	98.7	±1.8			
0.5	99.7	±2.4			
1.0	101.0	±2.0			
0.5	96.4	±1.7			
1.0	96.4	±1.9			
0.5	98.2	±1.7			
1.0	97.7	±1.8			
* IS = Barbital (internal standard).					
	(µg/mL) 0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	(μg/mL) %Recovery 0.5 96.2 1.0 94.9 0.5 98.5 1.0 100.8 0.5 97.2 1.0 98.7 0.5 99.7 1.0 101.0 0.5 96.4 1.0 96.4 1.0 96.4 1.0 97.7			

150

151


Discovery DSC-18 SPE Products

Retention Mechanism:Reversed-phase

Sample Matrix Compatibility: Aqueous solutions (biological fluids, water)

- Polymerically bonded, octadecyl (18%C), endcapped
- Higher 18%C loading for increased binding capacities and higher recoveries
- The least selective phase: retains most organic analytes from • aqueous matrices
- Can also be used for desalting aqueous matrices
- Beneficial for extracting structurally diverse analytes from the . same sample

CAT. NO. DESCRIPTION PRIC SPE TUBES 50mg/1mL 108 52601-U 100mg/1mL 108 52602-U 54 52603-U 500mg/3mL 500mg/6mL 30 52604-U 1g/6mL 30 52606-U 2g/12mL 52607-U 20 5g/20mL 20 52608-U 10g/60mL 52609-U 16 SPE 96-WELL PLATES 100mg/well 1 575603-U 575602-U 50mg/well 1 25mg/well 1 575601-U **BULK PACKING** Bulk packing 100g 52600-U

Retention Mechanism:Reversed-phase

Sample Matrix Compatibility: Aqueous solutions (biological fluids, water)

- Monomerically bonded, octadecyl (11%C), endcapped .
- Increased retention for moderately polar hydrophobic molec •
- Used to elute very large hydrophobic molecules that are to strongly retained on DSC-18. Offers opportunity to differentiate between drug metabolites in bioanalysis applications Use this less retentive phase for the rapid release of hydrophobic •
- .
- Use this less retentive phase for the rapid release of hydro compounds using weaker organic solvents at lower volumes

_		-	-		n
Е	DESCRIPTION	QTY.	CAT. NO.	PRICE	/s
	SPE TUBES				шo
	50mg/1mL	108	52610-U		õ
	100mg/1mL	108	52611-U		сh
	500mg/3mL	54	52613-U		Ľ.
	500mg/6mL	30	52615-U		р
	1g/6mL	30	52616-U		g
	2g/12mL	20	52618-U		a
	5g/20mL	20	52621-U		gт
	10g/60mL	16	52622-U		. <u>.</u>
	SPE 96-WELL PLATES				
	100mg/well	1	575606-U		M M M
	50mg/well	1	575605-U		3
	25mg/well	1	575604-U		q
	BULK PACKING				We
	Bulk packing	100g	52623-U		3041 \

Note: Unless stated otherwise, tubes are polypropylene. Frits are polyethylene with 20µm pores.

359.

Service: 1.800.

Technical

3010

325.

Order: 1.800.

Discovery DSC-8 SPE Products

Retention Mechanism:Reversed-phase

Sample Matrix Compatibility: Aqueous solutions (biological fluids, water)

- Monomerically bonded, octyl (9%C), endcapped; lower carbon content than DSC-18Lt
- Used to elute very large hydrophobic molecules too strongly retained on DSC-18 or DSC-18Lt

G001624

Discovery DSC-Ph SPE Products

Retention Mechanism:Reversed-phase

Sample Matrix Compatibility: Aqueous solutions (biological fluids, water)

- Monomerically bonded, phenyl (7%C), endcapped
- Similar in polarity to DSC-8; however, electron dense aromatic ring offers unique selectivity and retention
- Offers improved retention of conjugated ring structures over Use this less retentive phase for the rapid release of hydrophobialiphatic functional groups.

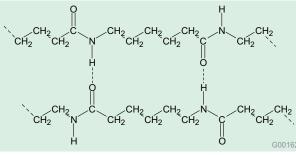
 Inorganic buffers of sufficient ionic strength may be elution 					
DESCRIPTION	QTY.	CAT. NO.	PRICE		
SPE TUBES					
50mg/1mL 100mg/1mL 500mg/3mL 500mg/6mL 1g/6mL 2g/12mL 5g/20mL 10g/60mL	108 108 54 30 20 20 20 16	52703-U 52707-U 52713-U 52714-U 52716-U 52717-U 52718-U 52722-U			
SPE 96-WELL PLATES					
100mg/well 50mg/well 25mg/well	1 1 1	575627-U 575628-U 575629-U			
BULK PACKING Bulk packing	100g	57223-U			

		ania achranta at	ر مرب امار معرف ا		0 1		
molecules us	ing weaker org	anic solvents at	lower volum	DESCRIPTION	QTY.	CAT. NO.	PRICE
0	fers of sufficien	it ionic strength r	may be used	SPE TUBES			
elution				50mg/1mL	108	52723-U	
RIPTION	QTY.	CAT. NO.	PRICE	100mg/1mL	108	52725-U	
	QCT I.	0/11.110.	TROL	500mg/3mL	54	52727-U	
UBES				500mg/6mL	30	52728-U	
/1mL	108	52703-U		1g/6mL	30	52731-U	
ıg/1mL	108	52707-U		SPE 96-WELL PLATES			
ıg/3mL	54	52713-U		100mg/well	1	575630-U	
ig/6mL	30	52714-U		0	1		
nL	30	52716-U		50mg/well	.1	575631-U	
mL	20	52717-U		25mg/well	1	575632-U	
mL	20	52718-U		BULK PACKING			
i0mL	16	52722-U		Bulk packing	100g	57227-U	

Note: Unless stated otherwise, tubes are polypropylene. Frits are polyethylene with 20µm pores.

152

Discovery DSC-CN SPE Products


Retention Mechanism: Reversed-phase or Normal phase

Sample Matrix Compatibility: Aqueous solutions (biological fluids, water) when used in reversed-phase; or organic solvents, oils, and lipids when used in normal phase

- Monomerically bonded, cyanopropyl (7%C), endcapped
- · Can be used in either reversed-phase or normal phase
- Ideal for very hydrophobic analytes that may be irreversibly • retained on more hydrophobic sorbents such as DSC-18
- Less retentive than DSC-Si or DSC-Diol when used in normal phase (organic matrices such as hexane or oils)
- Allows for the rapid release of very polar molecules irreversibly • retained on very polar sorbents

DESCRIPTION	QTY.	CAT. NO.	PRICE
SPE TUBES			
50mg/1mL	108	52693-U	
100mg/1mL	108	52694-U	
500mg/3mL	54	52695-U	
500mg/6mL	30	52696-U	
1g/6mL	30	52697-U	
2g/12mL	20	52698-U	
5g/20mL	20	52699-U	
10g/60mL	16	52700-U	
SPE 96-WELL PLATES			
100mg/well	1	575624-U	
50mg/well	1	575625-U	
25mg/well	1	575626-U	
BULK PACKING			
Bulk packing	100g	57222-U	

Discovery DPA-6S SPE Products

Retention Mechanism:Reversed-phase

Sample Matrix Compatibility: Aqueous or methanolic solutions

- Polyamide Resin: Particle Size: 50-160µm, Surf pH: 4.5-7. Density: 0.2-0.3cm3/g, Water Content: < 5%
- Used to adsorb polar compounds (-OH groups, esp. phend compounds) from aqueous or methanolic solutions under t reversed-phase mechanism through strong hydrogen bonding between compound hydroxyl groups and amide groups of the resin
- 000 Useful for extracting tannins, chlorophyll, humic acid, . pharmacologically active terpenoids, flavanoids, gallic acid catechol A, protocatechuic acid, and phloroglucinol σ
- Irreversibly retains quinones

	 Also useful for extracting aromatic carboxylic acids and 				
nitroaromatic co	0	emaile earbeighte	acids and ຫ ຜ ຮ		
 Irreversibly retain 	ns quinone:	S	sigr		
DESCRIPTION	QTY.	CAT. NO.	PRICE >		
SPE TUBES			PRICE >		
50mg/1mL	108	52624-U			
250mg/3mL	54	52625-U	a e		
250mg/6mL	30	52626-U	е К		
500mg/6mL	30	52627-U	~		
1g/12mL	20	52629-U	041		
2g/20mL	20	52631-U	30		
5g/60mL	16	52632-U	ග		
BULK PACKING			35		
Bulk packing	50g	52633-U	0		
BUCHNER FUNNELS			8 0 0		
110mm ID x 66mm H; 50g/800mL	1	52634-U	е 		
			ervic		
			s S		

Note: Unless stated otherwise, tubes are polypropylene. Frits are polyethylene with 20µm pores.

Preparation ample

153

SUPELCO

Technical

3010

325.

Order: 1.800.

Discovery DSC-Si SPE Products

Retention Mechanism:Normal phase

Sample Matrix Compatibility: Organic solvents, oils, and lipids

- Unbonded acid washed silica sorbent ideal for normal phase SPE and other modified flash techniques
- Often used to separate or remove structurally similar molecules through successive elutions with increasingly polar solutions
- The most polar normal phase sorbent available
- Excellent capacity for purifying solution phase combinatorial chemistry reactions when removing target molecules from reaction by-products and excess reagents

Discovery DSC-Diol SPE Products

Retention Mechanism:Normal phase

Sample Matrix Compatibility: Organic solvents, oils, and lipids

- Polymerically bonded, 2,3-Dihydroxypropoxypropyl (7%C)
- Polar sorbent most commonly used for normal phase applications (polar extractions from non-polar matrices)
- The sorbent's dihydroxy groups facilitates strong hydrogen bonding
- Excellent selectivity when extracting structurally similar molecules

 Available in Büchner Funnel configurations for easy 				
	DESCRIPTION	QTY.	CAT. NO.	PRICE
	SPE TUBES			
	50mg/1mL	108	52652-U	
	100mg/1mL	108	52653-U	
	500mg/3mL	54	52654-U	
	500mg/6mL	30	52655-U	
	1g/6mL	30	52656-U	
	2g/12mL	20	52657-U	
	5g/20mL	20	52658-U	
	10g/60mL	16	52659-U	
	SPE 96-WELL PLATES			
	100mg/well	1	575609-U	
	50mg/well	1	575608-U	
	25mg/well	1	575607-U	
	BULK PACKING			
	Bulk Packing	100g	52651-U	
	BUCHNER FUNNELS			
	50mmID x 30mmH; 12.5g	6	52591-U	
	70mmID x 40mmH; 25g	6	52592-U	
	90mmH x 48mmH; 50g	6	52593-U	
	110mmID x 66mmH; 100g	6	52594-U	

DESCRIPTION QTY. CAT. NO. PRIC ala SPE TUBES 50mg/1mL 108 52747-U 100mg/1mL 108 52748-U 52751-U 500mg/3mL 54 500mg/6mL 30 52752-U 52753-U 1g/6mL 30 SPE 96-WELL PLATES 100mg/well 575636-U 1 50mg/well 575637-U 1 25mg/well 575638-U 1 **BULK PACKING** Bulk packing 100g 57229-U

SUPELCO

Note: Unless stated otherwise, tubes are polypropylene. Frits are polyethylene with 20µm pores.

154

Preparation

Sample

155

Discovery DSC-NH₂ SPE Products

— Si — (CH₂)₃NH₂

Retention Mechanism:Normal phase or Anion-exchange

Sample Matrix Compatibility: Organic or aqueous solutions

- Polymerically bonded, aminopropyl phase that is very polar in
 nature (hydrogen bonding) allowing for both normal phase and
 ion exchange applications
- A weak anion exchanger with a pKa of 9.8. At pH 7.8 or below, the functional groups are positively charged
- Ion exchange capacity is ~ 0.43 meq/g.
- Allows the rapid release of very strong anions such as sulfonic acids that may be retained irreversibly by strong anion exchangers
- Can be used in some reversed-phase applications (due to ethol spacer); however, it is predominately used as an ion-excl or normal phase sorbent due to its polar nature

CE

DESCRIPTION	QTY.	CAT. NO.	PRI
SPE TUBES			
50mg/1mL	108	52635-U	
100mg/1mL	108	52636-U	
500mg/3mL	54	52637-U	
500mg/6mL	30	52638-U	
1g/6mL	30	52640-U	
2g/12mL	20	52641-U	
5g/20mL	20	52642-U	
10g/60mL	16	52644-U	
SPE 96-WELL PLATES			
100mg/well	1	575615-U	
50mg/well	1	575616-U	
25mg/well	1	575617-U	
BULK PACKING			
Bulk packing	100g	57212-U	

$-Si - (CH_2)_3 N^+ (CH_3)_3$

Retention Mechanism:Anion-exchange

Discovery DSC-SAX SPE Products

Sample Matrix Compatibility: Organic or aqueous solutions

- A polymerically bonded quarternary amine that remains d positively charged at all pH levels
- Counter ion is Cl⁻
- Ion exchange capacity is ~ 0.14 meq/g
 - Commonly used when extracting weaker cations (e.g., carboxylic acids) that may not bind strongly enough to wea anion-exchangers
- Selectivity can be modified by changing the counter ion wit appropriate buffer during conditioning

e to	othul			
xcł	DESCRIPTION	QTY.	CAT. NO.	PRICE
XUI	SPE TUBES			
	50mg/1mL	108	52661-U	
	100mg/1mL	108	52662-U	
	500mg/3mL	54	52664-U	
	500mg/6mL	30	52665-U	
	1g/6mL	30	52666-U	
	2g/12mL	20	52667-U	
	5g/20mL	20	52668-U	
	10g/60mL	16	52669-U	
	SPE 96-WELL PLATES			
	100mg/well	1	575618-U	
	50mg/well	1	575619-U	
	25mg/well	1	575620-U	
	BULK PACKING			
	Bulk packing	100g	57214-U	

Sample Preparation

Note: Unless stated otherwise, tubes are polypropylene. Frits are polyethylene with 20µm pores.

Discovery DSC-WCX SPE Products

$- \overset{|}{\underset{|}{\text{Si}}} - (CH_2)_3 N(CH_2 COONa) CH_2 CH_2 N(CH_2 COONa)_2$

Retention Mechanism:Cation exchange

Sample Matrix Compatibility: Organic or aqueous solutions

- A polymerically bonded, carboxy propyl phase with a pKa of 4.8
- Counter ion is Na
- Ion exchange capacity is ~ 0.15 meq/g
- Carries a negative charge at pH 6.8 or above
- A pH of 2.8 or below neutralizes this phase for easier elution of strong cationic analytes that are neutralized only at extreme basic conditions
- Typically used when dealing with very strong cationic (high pKa) compounds that may be irreversibly retained on strong cation exchangers

DESCRIPTION	QTY.	CAT. NO.	PRIC
SPE TUBES			
50mg/1mL	108	52737-U	
100mg/1mL	108	52739-U	
500mg/3mL	54	52741-U	
500mg/6mL	30	52742-U	
1g/6mL	30	52743-U	
2g/12mL	20	52744-U	
5g/20mL	20	52745-U	
10g/60mL	16	52746-U	
SPE 96-WELL PLATES			
100mg/well	1	575633-U	
50mg/well	1	575634-U	
25mg/well	1	575635-U	
BULK PACKING			
Bulk packing	100g	57228-U	

Discovery DSC-SCX SPE Products

$$-Si - (CH_2)_2 - O^{-SO_3-H^+}$$

Retention Mechanism:Cation exchange

Sample Matrix Compatibility: Organic or aqueous solutions

- A polymerically bonded, benzene sulfonic acid functional group, pKa (<1.0)
- Counter ion is H
- Silica support allows for use with very organic solvents (no shrinking/swelling)
- Excellent capacity (0.8meq/g) for cleaning up solution phase combinatorial chemistry reactions (removing target molecules from reaction by-products and excess reagents)
- The presence of the benzene ring offers some mixed-mode capabilities (hydrophobic interactions) that should be considered when extracting cations from aqueous matrices

DESCRIPTION	QTY.	CAT. NO.	PRICE
SPE TUBES			
50mg/1mL	108	52684-U	
100mg/1mL	108	52685-U	
500mg/3mL	54	52686-U	
500mg/6mL	30	52688-U	
1g/6mL	30	52689-U	
2g/12mL	20	52690-U	
5g/20mL	20	52691-U	
10g/60mL	16	52692-U	
SPE 96-WELL PLATES			
100mg/well	1	575621-U	
50mg/well	1	575622-U	
25mg/well	1	575623-U	
BULK PACKING			
Bulk packing	100g	57221-U	

Note: Unless stated otherwise, tubes are polypropylene. Frits are polyethylene with 20µm pores.

SUPELCO

Order:

156

reparatio

1.800.359.3041 Web: www.sigma-aldrich.com/supelco

ample

Solid Phase Extraction (SPE)

Supelclean ENVI SPE Tubes and Disks

Supelclean ENVI SPE Products: Supelclean ENVI-8 SPE Products Developed, highly tested, and quality controlled for environRetention Mechanism:Reversed-phase mental applications Sample Matrix Compatibility: Aqueous solutions (drinking, Seven different phase chemistries ranging from our uniqueround, waste water) ENVI-Carb carbon adsorbents to ENVI-18 DSKs - reversed High 14%C loading for increased binding capacities and higher phase SPE membranes for large volume water samples recoveries Available in glass tubes, Teflon and stainless steel frit Higher carbon loading also offers greater resistance to extreme configurations for EPA compliance pH conditions Ultra clean phases for highly sensitive analyses Excellent for cleaning, extracting and concentrating pollutants Documented applications in compliance to standardized EPA from aqueous environmental samples eparation methodology Used for extracting herbicides, fungicides, and pesticides f • Consistent particle size and specific surface area to ensure waste material reproducible recoveries DESCRIPTION CAT. NO PRICE QTY. SPE TUBES PROPERTIES 100mg/1mL 108 57230-U Base Silica: Irregular shape, acid washed ldrich.com/supelco 500mg/3mL 54 57231 Mean Particle Size: 45µm 500mg/6mL 30 57232 Mean Pore Diameter: 60Å 1g/6mL 30 57233 Total Pore Volume: 0.8cm3/g 5g/20mL 20 57139 Specific Surface Area: 475m²/g 10g/60mL 16 57140-U Endcapped: Yes SPE TUBES (GLASS TUBES; TEFLON FRITS) 500mg/3mL 57106 27 Supelclean ENVI-18 SPE Products 500mg/6mL 20 57107 Retention Mechanism:Reversed-phase ma-a Sample Matrix Compatibility: Aqueous solutions (drinking, Supelclean ENVI-18 & ENVI-8 DSK SPE Discs ground, waste water) The SPE membrane equivalents of ENVI-18 and ENVI-8 packed • Polymerically bonded, octadecyl (17%C), endcapped bed SPE sorbents Excellent for cleaning, extracting and concentrating pollutants Retention Mechanism:Reversed-phase ≥ × × from aqueous environmental samples Sample Matrix Compatibility: Aqueous solutions (drinking Web: • higher recoveries Porous glass fiber membranes embedded with C18 or $\overline{C8}$ Higher carbon loading also offers greater resistance to extreme . modified silica particles. pH conditions Provides faster flow rates and exhibits less clogging than Teflon Used for extracting herbicides, fungicides, and pesticides from . discs for the extraction of organic contaminants from drinking waste material water samples DESCRIPTION QTY CAT. NO PRICE Typical applications include polynuclear aromatic hydrocarbons SPE TUBES (PAHs), polychlorinated biphenyls (PCBs), phthalates, 100mg/1mL 108 57062 semivolatile organics, paraquat and diquat, pesticides and 500mg/3mL 54 57063 herbicides 30 500mg/6mL 57064 Servi 1g/6mL 30 505706 DESCRIPTION QTY. CAT. NO. PRICE 2g/12mL 20 57114 ENVI-18DSK SPE DISKS 5g/20mL 20 57137 Technical 47mm Diam 24 57171 10g/60mL 16 57138 90mm Diam. 12 57170-U **BULK PACKING** ENVI-8DSK SPE DISKS Bulk packing 100g 57219 47mm Diam. 24 57172 0 301 325. 800.

Note: Unless stated otherwise, tubes are polypropylene. Frits are polyethylene with 20µm pores.

<u>,</u>

Order:

Solid Phase Extraction (SPE) Supelclean ENVI SPE Tubes

Supelclean ENVI-Carb SPE Products

Graphitized Non-Porous Carbon

Retention Mechanism:Reversed-phase

Sample Matrix Compatibility: Aqueous solutions (drinking, ground, waste water)

- Extreme affinity for organic polar and non-polar compounds from both non-polar and polar matrices when used under reversed-phase conditions
- Carbon surface comprised of hexagonal ring structures, interconnected and layered into graphitic sheets
- Non-porous nature of the carbon phase allows for rapid processing, adsorption does not require analyte dispersion into solid phase pores
- Independent investigators have found ENVI-Carb extremely useful for the rapid sample preparation of over 200 pesticides from various matrices including ground water, fruits and vegetable

DESCRIPTION	QTY.	CAT. NO.	PRICE
ENVI-CARB (SURF. ARE	A 100₩G; 120/4	00 MESH)	
250mg/3mL	54	57088	
250mg/6mL	30	57092	
500mg/6mL	30	57094	
1g/12mL	20	57127-U	
2g/12mL	20	57128	
5g/20mL	20	57129	
10g/60mL	16	57130	
Bulk Packing	50g	57210-U	
ENVI-CARB C (SURF. AF	REA 10 I∛I G; 80/1	00 MESH)	
1g/12mL	20	57149	
ENVI-CARB X (SURF. AF	REA 250⊮G; 120	0/400 MESH)	
Bulk Packing	50g	10439-U	
ENVI-CARB Y (SURF. AF	REA 251∛/G; 120/	400 MESH)	
Bulk Packing	50g	10464-U	

Supelclean ENVI-Chrom P SPE Products

Styrene/divinyl benzene co-polymer

Retention Mechanism:Reversed-phase or Adsorption

Sample Matrix Compatibility: Aqueous solutions

- Particle Size: 80-160µm; Spherical Shape; Pore Size: 110-175Å; Surface Area: 900/g
- Highly crosslinked, neutral, specially cleaned styrenedivinylbenzene resin used to retain hydrophobic compounds with some hydrophilic functionality under reversed phase conditions
- Highly resistant to extreme pH conditions
- Typical applications include aromatics and phenolic compounds from aqueous sample matrices
- Used for priority pollutant phenols from aqueous samples

DESCRIPTION	QTY.	CAT. NO.	PRICE
ENVI-CHROM P SPE TUBES	(GLASS	TUBES; TEFLON FRITS)	1
100mg/1mL 250mg/3mL 250mg/6mL 500mg/6mL	108 54 30 30	57143 57224 57225-U 57226	
ENVI-CHROM P BULK PACK	ING		
Bulk packing	50g	57217	

Supelclean ENVI-Florisil

Magnesium Silicate

Retention Mechanism:Normal phase or Adsorption

Sample Matrix Compatibility: Organic solutions

- Mesh: 100/120; Available with Teflon or stainless steel frits
- Tested for US Environmental Protection Agency (EPA) Contract Laboratory Program (CLP) statement of work for pesticides
- Highly polar material that strongly adsorbs to polar compounds from nonpolar matrices under normal phase conditions
- Typical applications include alcohols, aldehydes, amines, herbicides, pesticides, PCBs, ketones, nitro compounds, organic acids, and phenols

DESCRIPTION	QTY.	CAT. NO.	PRICE
ENVI-FLORISIL			
500mg/3mL, Teflon	54	57058	
500mg/6mL, SS	30	57046	
1g/6mL, SS	30	57053	

Note: Unless stated otherwise, tubes are polypropylene. Frits are polyethylene with 20µm pores.

Solid Phase Extraction (SPE) Supelclean SPE Tubes

Preparation

Sample

Reversed Phase Supelclean SPE Tubes

Extract nonpolar to moderately polar analytes from aqueous samples.

DESCRIPTION	QTY.	CAT. NO.	PRICE
LC-18 (OCTADECYL, ~	~10% C, ENDCAPI	PED)	
100mg/1mL	108	504270	
500mg/3mL	54	57012	
500mg/6mL	30	57054	
1g/6mL	30	505471	
2g/12mL	20	57117	
5g/20mL	20	57135-U	
10g/60mL	16	57136	
Bulk Packing	100g	57202	
LC-8 (OCTYL, ~7% C,	ENDCAPPED)		
100mg/1mL	108	504157	
500mg/3mL	54	505145	
500mg/6mL	30	57052	
Bulk Packing	100g	57201	
LC-4 (BUTYLDIMETHY	/L, 500Å PORES, I	ENDCAPPED)	
500mg/3mL	54	57089	
LC-PH (PHENYL, ~5.5	% C, ENDCAPPED))	
100mg/1mL	108	504599	
500mg/3mL	54	505269	
HISEP (HYDROPHOBI HYDROPHILIC SURFA			
500mg/3mL	54	57076-U	

Normal Phase Supelclean SPE Tubes

Extract moderately polar to polar analytes from nonaqueous samples.

	DESCRIPTION	QTY.	CAT. NO.	PRICE
	LC-CN (CYANOPROPYL,	~7% C, ENDCA	APPED)	
	100mg/1mL 500mg/3mL 500mg/6mL 5g/20mL 10g/60mL	108 54 30 20 16	504386 57013 57056 57141 57142	
	LC-NH ₂ (AMINOPROPYL,	~5% C)		
	100mg/1mL 500mg/3mL Bulk Packing	108 54 100g	504483 57014 57205	
	LC-DIOL (DIOL, ~7% C)			
	100mg/1mL 500mg/3mL	108 54	504718 57016	

Adsorption Supelclean SPE Tubes

No bonded phase; extract polar analytes from nonpolar samples (LCP-Si, LC-Florisil, LC-Alumina).

v	,					
DESCRIPTION	QTY.	CAT. NO.	PRICE			
LC-SI (SILICA GEL)						
100mg/1mL	108	504041				
500mg/3mL	54	505048				
500mg/6mL	30	505374				
1g/6mL	30	57051				
2g/12mL	20	57116				
5g/20mL 10g/60mL	20 16	57133 57134				
Bulk Packing	100g	57200				
LC-FLORISIL (MAGNES						
1g/6mL	30	57057				
2g/12mL	20	57115				
5g/20mL	20	57131				
10g/60mL	16	57132				
Bulk Packing	100g	57209				
· · · · · · · · · · · · · · · · · · ·	LC-ALUMINA-N (ALUMINA FOR NEUTRAL pH (~6.5)					
BROCKMANN ACT. I, 60)/325 MESH)					
1g/3mL	54	57086				
2g/6mL	30	57087				
Bulk Packing	100g	57208				
LC-ALUMINA-A (ALUMI BROCKMANN ACT. I, 60		oH (~5)				
1g/3mL	54	57082-U				
2g/6mL	30	57083-U				
Bulk Packing	100g	57206				
LC-ALUMINA-B (ALUMI BROCKMANN ACT. I, 60		H (~8.5)				
1g/3mL	54	57084				
2g/6mL	30	57085				

Ion Exchange Supelclean SPE Tubes Interaction based on ionic attraction.

DESCRIPTION	QTY.	CAT. NO.	PRICE			
LC-SAX (QUATERNAR)	Y AMINE, Ct COUI	NTERION)				
100mg/1mL	108	504815				
500mg/3mL	54	57017				
Bulk Packing	100g	57203				
LC-SCX (ALIPHATIC SULFONIC ACID, Na COUNTERION)						
100mg/1mL	108	504920				
500mg/3mL	54	57018				
Bulk Packing	100g	57204				
LC-WCX (CARBOXYLIC	CACID, Na ⁺ COUN	ITERION)				
100mg/1mL	108	505595				
500mg/3mL	54	57061				

Note: Unless stated otherwise, tubes are polypropylene. Frits are polyethylene with 20µm pores.

Solid Phase Extraction (SPE) Method Development Kits, Discovery 96-Well Plates

Supelclean SPE Method Development Kits

KIT:	KIT A	KIT B	KIT C	KIT RP-3	KIT NP-3	KIT IX-1	KIT IX-3
Packing			So	orbent Qty./Tube Siz	ze		
LC-Si	500mg/3mL	100mg/1mL	500mg/6mL 1g/6mL		500mg/3mL		
LC-8	500mg/3mL	100mg/1mL	500mg/6mL	500mg/3mL			
LC-18	500mg/3mL	100mg/1mL 1g/6mL	500mg/6mL	500mg/3mL			
LC-CN	500mg/3mL	100mg/1mL	500mg/6mL	500mg/3mL		100mg/1mL	500mg/3mL
LC-Diol	500mg/3mL	100mg/1mL			500mg/3mL		
LC-NH ₂	500mg/3mL	100mg/1mL			500mg/3mL	100mg/1mL	500mg/3mL
LC-Ph	500mg/3mL	100mg/1mL		500mg/3mL			
LC-SAX	500mg/3mL	100mg/1mL				100mg/1mL	500mg/3mL
LC-SCX	500mg/3mL	100mg/1mL				100mg/1mL	500mg/3mL
LC-WCX	500mg/3mL	100mg/1mL				100mg/1mL	500mg/3mL
LC-Alumina-A			2g/6mL		1g/3mL		
LC-Alumina-B			2g/6mL		1g/3mL		
LC-Alumina-N			2g/6mL		1g/3mL		
LC-Florisil			1g/6mL				
QTY. EA. TUBE: CAT. NO.: PRICE:	6 57019	12 57009-U	3 57075-U	12 57071	6 57074-U	24 57072	12 57073

Discovery 96-Well Plates

Discovery 96-Well Plates answer the challenge of high throughput pharmaceutical screening and analysis. The uniform flow dynamics inherent with well plate technology offers a higher level of reproducibility and throughput while maintaining excellent recoveries and increased sensitivity. These plates are packed with the same high-quality phases used in our Discovery SPE line.

DESCRIPTION	QTY.	CAT. NO.	PRICE	DESCRIPTION	QTY.	CAT. NO.	PRIC
DSC-18 SPE 96-WELL	PLATES			DSC-DIOL SPE 96-WE	ELL PLATES		
100mg/well 50mg/well 25mg/well	1 1 1	575603-U 575602-U 575601-U		100mg/well 50mg/well 25mg/well	1 1 1	575636-U 575637-U 575638-U	
DSC-18LT SPE 96-WEL	L PLATES			DSC-NH ₂ SPE 96-WEL	L PLATES		
100mg/well 50mg/well 25mg/well	1 1 1	575606-U 575605-U 575604-U		100mg/well 50mg/well 25mg/well	1 1 1	575615-U 575616-U 575617-U	
DSC-8 SPE 96-WELL P	LATES			DSC-SAX SPE 96-WE	LL PLATES		
100mg/well 50mg/well 25mg/well	1 1 1	575627-U 575628-U 575629-U		100mg/well 50mg/well 25mg/well	1 1 1	575618-U 575619-U 575620-U	
DSC PH SPE 96-WELL	PLATES			DSC-WCX SPE 96-WE	ELL PLATES		
100mg/well 50mg/well 25mg/well	1 1 1	575630-U 575631-U 575632-U		100mg/well 50mg/well 25mg/well	1 1 1	575633-U 575634-U 575635-U	
DSC-CN SPE 96-WELL	PLATES			DSC-SCX SPE 96-WE	LL PLATES		
100mg/well 50mg/well 25mg/well	1 1 1	575624-U 575625-U 575626-U		100mg/well 50mg/well 25mg/well	1 1 1	575621-U 575622-U 575623-U	
DSC-SI SPE 96-WELL F	PLATES			DSC-PS/DVB SPE 96-	WELL PLATES		
100mg/well 50mg/well 25mg/well	1 1 1	575609-U 575608-U 575607-U		50mg/well 25mg/well	1 1	575611-U 575610-U	

Solid Phase Extraction (SPE)

Solid Phase Combinatorial Chemistry

Solid Phase Combinatorial Chemistry

Discovery DCS-Si SPE Products

In recent years, advances in combinatorial chemistry (CombiChem) have made a tremendous impact on the pharmaceutical industry by dramatically accelerating the drug discovery process. However, for each synthesis a purification step is required to remove the target molecule from reaction by-products and excess reagents. Because many reactions contain polar to moderately polar reagents, by-products, and products that can b selectively extracted with normal phase SPE, modified flash techniques utilizing silica packed SPE hardware have become a routine procedure for purifying solution-phase combinatorial reactions.

Discovery SPE products offer combinatorial chemists an excelle opportunity for developing a simple and standardized high throughput purification method for their combinatorial libraries.

In normal phase SPE, polar compounds are retained or adsorber onto the sorbent via polar-polar interactions when loaded in the presence of an organic sample matrix. Provided that the products, by-products, and reagents display varying polarities, choosing solvents with increasing polarity will allow for sequential elution of key compounds. In most combinatorial flash purification techniques, compounds not of interest are retained on the stationary phase. The products are then collected for analysis in the load flow through, or if weakly adsorbed, they can be selectively removed with a subsequent wash step.

Many combinatorial chemistry labs are synthesizing and characterizing extensive drug libraries. Chemists are therefore employing modified flash chromatography techniques in a 96-well SPE format for the purpose of sample clean-up and baseline impurity removal. In many combinatorial chemistry labs, capacity is a primary concern for such applications. In our studies, we have determined the binding capacity of 4-Fluoro-3-Empty Glass Reaction Tubes nitrobenzoic acid when loaded into a DSC-Si SPE 96-well plate Inert glass tubes, Teflon frits and Teflon closures

(100mg/well). Our results show that ~12.5mg of the Fluoro compound can be loaded onto 100mg DSC-Si before beakthrough occurs. Breakthrough determination was analyzed via HPLC analysis (see Table A).

Table A. Binding Capacity of 4-Fluoro-3-Nitrobenzoic acid on DSC-Si (100mg/well)

LOAD AMOUNT*	BREAKTHROUGH AMOUNT
2.5mg	No Breakthrough
5.0mg	No Breakthrough
10.0mg	No Breakthrough
12.5mg	No Breakthrough
15.0mg	0.10 % Breakthrough Occured
* Sample Matrix in 200µL Methylene Ch	loride

n = 3 for each load amount.

RELATED INFORMATION

Title

For more information on Combinatorial Chemistry request the following free technical literature.

- No.
- Sigma-Aldrich Combinatorial Chemistry Handbook FD7 DGQ Aldrich Polymer Products CD - Catalog and Reference Guide

DESCRIPTION	QTY.	CAT. NO.	PRICE
SPE TUBE\$			
[/] 50mg/1mL	108	52652-U	
100mg/1mL	108	52653-U	
ts500mg/3mL	54	52654-U	
500mg/6mL	30	52655-U	
pag/6mL	30	52656-U	
2g/12mL	20	52657-U	
5g/20mL 10g/60mL	20	52658-U	
10g/60mL	16	52659-U	
SPE-96 WELL PLATES			
100mg/well	1	575609-U	
enstomg/well	1	575608-U	
25mg/well	1	575607-U	
BULK PACKING			
Bulk Packing	100g	52651-U	
BÜCHNER FUNNELS			
50mmID x 30mmH; 12.5g	6	52591-U	
70mmID x 40mmH; 25g	6	52592-U	
90mmH x 48mmH; 50g	6	52593-U	
110mmID x 66mmH; 100g	6	52594-U	

¹ Tubes are polypropylene, frits are polyethylene with 20µm pores.

504394

www.sigma-aldrich.com/supelco

,

Service:

325.

800.

Order: 1.

Web: Reduce interferences and contamination of your reaction mixtures

504343

- Resistant to aggressive solvents and chemical solutions
- High flow frit porosity allows for gravity or rapid vacuum rinsing 800

DESCRIPTION	QTY.	CAT. NO.	PRICE
6mL glass tubes, Teflon frits	24	504394	
Teflon Tube adapters with port	24	504335	
6mL solid Teflon caps	24	504343	
Male luer plugs, PP	12	504351	
Female luer plugs, PP	12	57098	
Replacement Teflon frits			
for 6mL glass tubes	60	504327	

Combigel XE-305 Support

echnical Our version of Amberlite XE-305. A proprietary, underivatized, polystyrene resin with unique swelling properties that make it 0 ideal for solid phase combinatorial chemistry reactions. 30

DESCRIPTION	QTY.	CAT. NO.	PRICE
Bulk Packing	50g	502537B	

Solid Phase Extraction (SPE)

Custom Products, Hardware Configuration

Custom SPE products

Supelco's line of SPE products comprised of an array of sorbents, resins and hardware configurations including polybrespylene tu glass tubes, 96-well plates, Büchner funnels, and various positive pressure cartridges. Scattered throughout our standard SPE line you'll see the availability of these various SPE devices at varying degrees. Supelco offers custom manufacturing that vices you can optimize your sample processing procedure to the parameters dictated by your sample prep objectives. If there's a cert permutation of phase chemistry, bed weight and hardware configuration you require that's not listed within our standard product line, please inquire. To request a price quote or inquire on the feasibility of Supelco manufacturing a custom SPE praceduct, pl contact our Order Processing representatives:

Telephone: 800-247-6628, 814-359-3441

Fax: 800-447-3044, 814-359-3044

Email: supelco@sial.com

Polypropylene SPE Tubes

Standard Desig8upelco's standard Discovery and Supelclean SPE tubes are comprised primarily of straight-walled serelogical grade polypropylene syringe barrels. Each of the 20+ available bonded phases and resins are available in an array of bed weights and volumes ranging from 1, 3, 6, 12, 20, and 60mL.

Flangeless Designangeless (tabless/wingless) 1 and 3mL SPE tubes that can be eluted directly into 96-well collection plates, using the Gilson Nebula Series SPE 215 System.

Reversible Designur reversible SPE tubes allows for both forward and reverse flow capabilities offering great utility in trace

enrichment applications. The tubes consist of a female luer inlet Büchner Funnels and a male luer outlet. Reversible tubes are available in 0.5, 1,

and 2mL configurations.

Glass Tubes

Inert glass tubes (3 & 6mL) are available for preparations that demand high purity extracts and increased solvent compatibility.

Teflon and Stainless Steel Frits

Use Teflon or stainless steel frits when solvent compatibility and tube cleanliness are of concern. Stainless steel frits are not available with glass SPE tubes.

Discovery SPE 96-Well Plates

Process up to 96 samples at once using Discovery SPE 96-Well Plates. The well plates are a one-piece 2mL polypropylene square well design which will fit most standard well plate manifolds. Available bed weights include 25, 50, & 100mg/well. The well plates are compatible with most robotic and automated liquid handling systems:

TomTec Quadra 96

.

- Packard Multi-Probe
- Gilson SPE 215
- **Beckman Biomek**

Our Büchner funnels are sturdy two piece polypropylene units offering excellent chemical resistance, making them invaluable tools for large scale pharmaceutical preparations. The upper half of the Büchner funnels come pre-packed with the Supelco resin or bonded phase of your choice. Holding the packed bed in place are two polyethylene frits layered tight with a thermally welded retaining ring. Available Büchner funnel dimensions and bed weights include:

- 55mmID x 30mmH, 12.5g
 90mmID x 48mmH, 50g
- 70mmID x 40mmH, 25g 110mmID x 66mmH, 100g

Rezorian Cartridges

Our disposable Rezorian Luer-Lock syringe-tip cartridges are fast and convenient for isolating, purifying, and concentrating molecules from a variety of sample matrices. Use where positive pressure is preferred. Rezorian cartridges, pre-packed with the Supelco bonded-phase or resin of your choice, are available in 1 & 5mL configurations.

reparation

Web:

3041

359.

1.800.

Service:

Technical

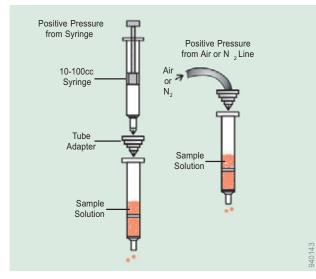
3010

325.

1.800.

Order:

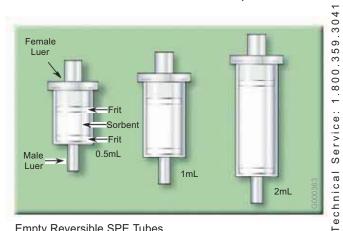
ample


Solid Phase Extraction (SPE) Polypropylene SPE Tube Components, Tube Adapters

Polypropylene SPE Tube Components

These components can be used for packing your own SPE material.

DESCRIPTION	QTY.	CAT. NO.	Р			
EMPTY POLYPROPYLENE SPE TUBES WITH						
POLYETHYLENE FRITS (20µm PORE SIZE)						
1mL	108	57023				
3mL	54	57024				
6mL	30	57026				
12mL 20mL	20 20	57176 57177				
60mL	16	57178				
EMPTY POLYPROPYLENE SPE TUBES (NO FRITS)						
1mL	108	57240-U				
3mL	54	57241				
6mL	30	57242				
12mL	20	57179				
20mL	12	57021				
60mL	12	57022				
POLYETHYLENE FRITS (20µm	PORE SIZ	E)				
For 1mL Tubes	216	57244				
For 3mL Tubes	108	57180-U				
For 6mL Tubes	60	57181				
For 12mL Tubes For 20mL Tubes	40 40	57182-U 57183				
For 60mL Tubes	32	57184				
STAINLESS STEEL FRITS (20µ						
For 6mL Tubes	60	57246-U				
TEFLON FRITS (20µm PORE SI						
For 1mL Tubes	216	57185				
For 3mL Tubes	108	57186				
For 6mL Tubes	60	57187				
For 12mL Tubes	40	57188				
For 20mL Tubes	40	57189				
For 60mL Tubes	32	57190-U				
CAPS FOR POLYPROPYLENE (ENCLOSES TOP OF SPE TUB)		S				
For 1mL Tubes	108	52171-U				
For 3mL Tubes	54	52172-U				
For 6mL Tubes	30	52173-U				
For 12mL Tubes	20	52174-U				
For 20mL Tubes	20	52175-U				
For 60mL Tubes	20	52176-U				
MALE & FEMALE LUER PLUGS (SEALS LUER OUTLETS ON SPE TUBES)						
Male Luer Plugs	12	504351				
Female Luer Plugs	12	57098				



Tube Adapters

RICE

Tube adapters serve many purposes. They can be used to stage one SPE tube on top of another to provide different selectivities A larger empty syringe barrel can be stacked on top of a smaller SPE tube to act as a larger load reservoir. Or, they can serve as an adapter for positive pressure methods (e.g. from a syringe or $a \dot{t}$ N₂ line). www.sigma-al

DESCRIPTION	QTY.	CAT. NO.	PRICE	na
SPE TUBE ADAPTERS FOR POLYPROPYLENE TUBES				
For 1, 3, 6mL tubes	12	57020-U		s.
For 12, 20, 60mL tubes	6	57267		N N
AUTOTRACE SPE TUBE ADAPTERS*				
For 3mL Tubes	6	57123		 9
For 6mL Tubes	6	57126		Φ
* Allows SPE tubes to be used with AutoTrace Automated Systems				≥

Empty Reversible SPE Tubes

Our reversible SPE tubes provide good utility in trace enrichment applications by permitting forward and reverse flows. These tuges consist of a female luer inlet and a male luer outlet, and are constructed of polypropylene. Reversible tubes are available in 0.5, 1, and 2mL configurations with maximum bed wieghts of $^{-}_{0}$ 175, 350, and 700mg respectively. Tubes are available pre-paced with the Supelco bonded-phase or resin of your choice throughour custom service (see previous page). Order

upelco

SUPELCO

163